Main Article Content

Authors

In the framework of the philosophy of contemporary mathematics, Hellman and Awodey both hold an interesting discussion on the role of Zermelo-Fraenkel Set Theory and Category Theory in the perspective of a good foundation for mathematics. For Hellman, neither Set Theory nor Category Theory constitutes a good foundational framework for mathematics and, in addition, Categories does not achieve a strong autonomy regarding Sets. Awodey's claim is that Category Theory is a best option in the frame of a new way of understanding what a foundation of mathematics means. In this sense, the aim of this paper is to highlight the philosophical main features of this discussion, to establish some related positions and to show some interesting consequences for the philosophy of mathematics.

Luz Victoria De La Pava, Universidad del Valle, Cali, Colombia

Profesora de la Universidad del Valle. Licenciada en matemáticas y física. Magister en matemáticas por la Universidad del Valle. Sus principales áreas de trabajo y de investigación son: historia de las matemáticas, lógica y fundamentos de las matemáticas.

E-mail: victoria.delapava@correounivalle.edu.co

Edgar Fernando Gálvez, Universidad del Valle, Cali, Colombia

Profesor de la Universidad del Valle. Licenciado en Filosofía y Magister en Educación Matemática por la Universidad del Valle. Estudios doctorales en filosofía matemática.  Sus principales áreas de trabajo y de investigación son: filosofía de la matemática, historia y educación matemática.

E-mail: edgar.f.galvez@correounivalle.edu.co

Awodey, S. (1996): “Structure in Mathematics and Logic: A categorical Perspective”, Philosophia Mathematica, 4, pp. 209-237.

Awodey, S. (2004): “An Answer to Hellman’s Question: ‘Does Category Theory Provide a Framework for Mathematical Structuralism?’”, Philosophia Mathematica, 12 (1), pp. 54-64.

Benacerraf, P. (1965): “What Numbers Could Not Be”. The Philosophical Review, 74 (1), pp. 47-73.

Bourbaki, N. (1950): “The Architecture of Mathematics”. The American Mathematical Monthly, 57, (4), pp. 221-232.

Bourbaki, N. (1968): Theory of Sets. English translation of volumen 1 of Élements de Mathématiques. 10 vols. Paris: Hermann.

Caramello, O. (2010): “The unification of Mathematics via Topos Theory”. En arXiv:1006.3930v1.

Feferman, S. (1969): “Set-theoretical Foundations of Category Theory”, in M. Barr, et a., eds., Reports of the Midwest Category Seminar III,Lecture Notes in Mathematics 106, American Mathematical Society, 201-247.

Hellman, G. (1989). Mathematics without Numbers: Towards a Modal-Structural Interpretation. UK: Oxford University Press.

Hellman, G. (2003): “Does category theory provide a framework for mathematical structuralism?”, Philosophia Mathematica, 11 (2), pp. 129-157.

Leinster, T. (2014): Basic Category Theory. UK: Cambridge University Press.

Mac Lane, S. and Moerdijk, I. (1992): Sheaves in Geometry and Logic: A First Introduction to Topos Theory, New York: Springer-Verlag.

Shapiro, S. (1997): Philosophy of Mathematics: Structure and Ontology. Oxford university Press.

Zalamea, F. (2009): Filosofía sintética de las matemáticas contemporáneas. Bogotá: Editorial Universidad Nacional de Colombia.
De La Pava, L. V., & Gálvez, E. F. (2017). The philosophical structuralism and the foundations of mathematics: the Hellman-Awodey controversy. Praxis Filosófica, (45S), 197–218. https://doi.org/10.25100/pfilosofica.v0i45S.6146

Downloads

Download data is not yet available.
Received 2018-02-01
Accepted 2018-02-01
Published 2017-07-15