Quantifiers, Disjunction, and Truth-Values with Two Numbers
Main Article Content
Context: Cognitive studies seem to show that two kinds of tasks are controversial. Both have a quantified premise, a quantified conclusion, and a disjunction in the premise. The difference is that the quantifier (both in the premise and in the conclusion) is existential in one of them, and universal in the other one. In both cases, the conclusion is one of the disjuncts. To infer its disjuncts from a disjunction is not correct in First-Order Predicate Calculus. However, people tend to accept the conclusion when the quantifier is existential and reject it when the quantifier is universal. I try to argue that a non-axiomatic logic with truth-values with two numbers can come to those results too.
Methodology: I review the two types of tasks from the resources of that non-axiomatic logic. The main components I consider are the inheritance and instance copulas, and the value of frequency of a statement. The latter value is calculated from all the pieces of evidence the system has and the amount of those pieces supporting the statement.
Conclusions: considering components such as those ones, it is possible to check that the non-axiomatic logic can come to the conclusions reported in the literature for the two kinds of tasks analyzed.
- inheritance copula
- instance copula
- Non-Axiomatic Logic
- quantification
- truth-values with two numbers
Carnap, R. (1936). Testability and meaning. Philosophy of Science, 3(4), 419-471. https://doi.org/10.1086/286432 DOI: https://doi.org/10.1086/286432
Carnap, R. (1937). Testability and meaning – Continued. Philosophy of Science, 4(1), 1-40. https://doi.org/10.1086/286443 DOI: https://doi.org/10.1086/286443
Johnson-Laird, P. N. (2023). Possibilities and human reasoning. Possibilities Studies & Society, 1(1-2), 105-112. https://doi.org/10.1177/27538699231152731 DOI: https://doi.org/10.1177/27538699231152731
Johnson-Laird, P. N. & Ragni, M. (2024). Reasoning about possibilities: Modal logics, possible worlds, and mental models. Psychonomic Bulletin & Review, 32, 52-79. https://doi.org/10.3758/s13423-024-02518-z DOI: https://doi.org/10.3758/s13423-024-02518-z
Johnson-Laird, P. N., Byrne, R. M. J., & Khemlani, S. (2023). Human verifications: Computable with truth tables outside logic. Proceedings of the National Academy of Sciences, 120(40), e2310488120. https://doi.org/10.1073/pnas.2310488120 DOI: https://doi.org/10.1073/pnas.2310488120
Johnson-Laird, P. N., Byrne, R. M. J., & Khemlani, S. (2024). Models of possibilities instead of logic as the basis of human reasoning. Minds & Machines, 34(19). https://doi.org/10.1007/s11023-024-09662-4 DOI: https://doi.org/10.1007/s11023-024-09662-4
Johnson-Laird, P. N., Quelhas, A. C., & Rasga, C. (2021). The mental model theory of free choice permissions and paradoxical disjunctive inferences. Journal of Cognitive Psychology, 33(8), 951-973. https://doi.org/10.1080/20445911.2021.1967963 DOI: https://doi.org/10.1080/20445911.2021.1967963
López-Astorga, M. (2024). Progressive confirmation of two mental systems. Problemos, 105, 196-207. https://doi.org/10.15388/Problemos.2024.105.15 DOI: https://doi.org/10.15388/Problemos.2024.105.15
Wang, P. (2006). Rigid Flexibility: The Logic of Intelligence. Springer. https://doi.org/10.1007/1-4020-5045-3 DOI: https://doi.org/10.1007/1-4020-5045-3
Wang, P. (2011). The assumptions on knowledge and resources in models of rationality. International Journal of Machine Consciousness, 3(1), 193-218. https://doi.org/10.1142/S1793843011000686 DOI: https://doi.org/10.1142/S1793843011000686
Wang, P. (2013). Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scientific. https://doi.org/10.1142/8665 DOI: https://doi.org/10.1142/8665
Wang, P. (2023). The Role of Copulas in Reasoning (Technical Report #17). Temple AGI Team, Temple University.
Downloads
Funding data
-
Fondo Nacional de Desarrollo Científico y Tecnológico
Grant numbers 1240010

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
De acuerdo con nuestra política (Licencia Creative Commons CC BY-NC-SA 4.0) los artículos presentados y sometidos al proceso editorial en la revista Praxis Filosófica no tienen costo alguno para sus autores ni retribuciones económicas para la revista. El artículo de carácter inédito, producto de investigación o de algún proyecto que se presente a Praxis Filosófica, no podrá estar sometido a otro proceso de publicación durante el proceso que se lleve en nuestra revista.