Main Article Content

Authors

Context: Cognitive studies seem to show that two kinds of tasks are controversial. Both have a quantified premise, a quantified conclusion, and a disjunction in the premise. The difference is that the quantifier (both in the premise and in the conclusion) is existential in one of them, and universal in the other one. In both cases, the conclusion is one of the disjuncts. To infer its disjuncts from a disjunction is not correct in First-Order Predicate Calculus. However, people tend to accept the conclusion when the quantifier is existential and reject it when the quantifier is universal. I try to argue that a non-axiomatic logic with truth-values with two numbers can come to those results too.
Methodology: I review the two types of tasks from the resources of that non-axiomatic logic. The main components I consider are the inheritance and instance copulas, and the value of frequency of a statement. The latter value is calculated from all the pieces of evidence the system has and the amount of those pieces supporting the statement.
Conclusions: considering components such as those ones, it is possible to check that the non-axiomatic logic can come to the conclusions reported in the literature for the two kinds of tasks analyzed.

Miguel López-Astorga, Universidad de Talca, Talca, Chile.

Profesor Titular en el Instituto de Estudios Humanísticos de la Universidad de Talca, Chile. Doctor en Lógica y Filosofía de la Ciencia por la Universidad de Cádiz, España (Grado de Doctor reconocido por la Universidad de Chile). Diploma de Estudios Avanzados (Suficiencia Investigadora) en el área de Lógica y Filosofía de la Ciencia por la Universidad de Cádiz, España. Licenciado en Filosofía y Ciencias de la Educación (Sección Filosofía) por la Universidad de Sevilla, España (título revalidado por el de Profesor de Educación Media en Filosofía en la Universidad de Chile). Principales áreas de trabajo y de investigación: Lógica, Filosofía de la Ciencia Cognitiva, Epistemología.

Carnap, R. (1936). Testability and meaning. Philosophy of Science, 3(4), 419-471. https://doi.org/10.1086/286432 DOI: https://doi.org/10.1086/286432

Carnap, R. (1937). Testability and meaning – Continued. Philosophy of Science, 4(1), 1-40. https://doi.org/10.1086/286443 DOI: https://doi.org/10.1086/286443

Johnson-Laird, P. N. (2023). Possibilities and human reasoning. Possibilities Studies & Society, 1(1-2), 105-112. https://doi.org/10.1177/27538699231152731 DOI: https://doi.org/10.1177/27538699231152731

Johnson-Laird, P. N. & Ragni, M. (2024). Reasoning about possibilities: Modal logics, possible worlds, and mental models. Psychonomic Bulletin & Review, 32, 52-79. https://doi.org/10.3758/s13423-024-02518-z DOI: https://doi.org/10.3758/s13423-024-02518-z

Johnson-Laird, P. N., Byrne, R. M. J., & Khemlani, S. (2023). Human verifications: Computable with truth tables outside logic. Proceedings of the National Academy of Sciences, 120(40), e2310488120. https://doi.org/10.1073/pnas.2310488120 DOI: https://doi.org/10.1073/pnas.2310488120

Johnson-Laird, P. N., Byrne, R. M. J., & Khemlani, S. (2024). Models of possibilities instead of logic as the basis of human reasoning. Minds & Machines, 34(19). https://doi.org/10.1007/s11023-024-09662-4 DOI: https://doi.org/10.1007/s11023-024-09662-4

Johnson-Laird, P. N., Quelhas, A. C., & Rasga, C. (2021). The mental model theory of free choice permissions and paradoxical disjunctive inferences. Journal of Cognitive Psychology, 33(8), 951-973. https://doi.org/10.1080/20445911.2021.1967963 DOI: https://doi.org/10.1080/20445911.2021.1967963

López-Astorga, M. (2024). Progressive confirmation of two mental systems. Problemos, 105, 196-207. https://doi.org/10.15388/Problemos.2024.105.15 DOI: https://doi.org/10.15388/Problemos.2024.105.15

Wang, P. (2006). Rigid Flexibility: The Logic of Intelligence. Springer. https://doi.org/10.1007/1-4020-5045-3 DOI: https://doi.org/10.1007/1-4020-5045-3

Wang, P. (2011). The assumptions on knowledge and resources in models of rationality. International Journal of Machine Consciousness, 3(1), 193-218. https://doi.org/10.1142/S1793843011000686 DOI: https://doi.org/10.1142/S1793843011000686

Wang, P. (2013). Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scientific. https://doi.org/10.1142/8665 DOI: https://doi.org/10.1142/8665

Wang, P. (2023). The Role of Copulas in Reasoning (Technical Report #17). Temple AGI Team, Temple University.

López-Astorga, M. (2025). Quantifiers, Disjunction, and Truth-Values with Two Numbers. Praxis Filosófica, (62), e20514445. https://doi.org/10.25100/pfilosofica.v0i62.14445

Downloads

Download data is not yet available.

Funding data