Contenido principal del artículo

Autores

It is impossible to fully grasp reality and the universe without a sound understanding of quantum science, i.e. theory. The aim of this paper is twofold, namely first presenting what quantum information processing consists of, and then consequently discussing the implications of quantum science to the understanding of reality. I shall claim that the world is fully quantum, and the classical world is but a limit case of the quantum world. The crux of the argument is that quantum information can be taken as a living phenomenon. Quantum information processing (QIP) has been mainly the subject of computational approaches. Here we take it as the way in which information allows for a non-dualistic explanation of the world. In this sense, quantum information processing consists in understanding how entanglement stands as the ground for a coherent reality yet highly dynamical, vibrant and vivid. Information, I argue, is a living phenomenon that creates itself out of nothing. Quantum information is a relational view of entities, systems, phenomena, and events (Auletta, 2005).

Carlos Eduardo Maldonado, Universidad El Bosque

Profesor titular de la Universidad El Bosque. Ph. D. en Filosofía (KULeuven, Belgica).
Postdoctorados: como Visiting Scholar, University of Pittsburgh; como Visiting Research
Professor, Catholic University of America, (Washington, D. C.), como Visiting Scholar,
University of Cambridge. Área de estudio: ciencias de la complejidad.

Maldonado, C. E. (2021). The World as a Quantum Information Processor. Praxis Filosófica, (53), 53–68. https://doi.org/10.25100/pfilosofica.v0i53.11448 (Original work published 27 de agosto de 2021)

Auletta, A. (2001). Foundations and interpretation of Quantum Mechanics. World Scientific Publishing.

Auletta, G. (2005). Quantum information as a general paradigm. Foundations of Physics, (35), 787-815.

Auletta, G. (2011). Cognitive biology. Cambridge University Press.

Barbour, J. (1999). The End of Time. The Next Revolution in Physics. Oxford University Press.

Carroll, S. (2017). The Big Picture. On the Origins of Life, Meaning, and the Universe Itself. Dutton.

Chefles, A. (2000). Quantum state discrimination. Contemporary Physics, 41(6), 401-424. https://doi.org/10.1080/00107510010002599

Damasio, A. (2019). The Strange Order of Things: Life, Feeling, and the Making of Cultures. Penguin Books.

Damasio, Ph. (2018). Beyond Weird. Why everything you thought you knew about quantum physics is different. The Bodley Head.

Djordjevic, I. B. (2016). Quantum Biological Information Theory. Springer Verlag.

Fuchs, S. B., & Hodges, A. (2016). The Once and Future Turing. Cambridge University Press.

Ellis, G. F. R. (2011). Does the multiverse really exist? Scientific American, 305(2), 38-43. https://doi.org/10.1038/scientificamerican0811-38

Englert, B. G. (1996). Fringe Visibility and Which-Way Information: An Inequality. Physical Review Letters, (77), 2154. https://doi.org/10.1103/PhysRevLett.77.2154

Fuchs, C. A., & Peres, A. (2000). Quantum theory needs no ‘interpretation. Physics Today, (53), 70-71. https://doi.org/10.1063/1.883004

Fuchs, Ch. (2002). Quantum Mechanics as Quantum Information (and a little bit more). https://arxiv.org/pdf/quant-ph/0205039.pdf

Halpern, P. (2018). The Quantum Labyrinth. How Richard Feynman and John Wheller Revolutionized Time and Reality. Basic Books.

Hands, J. (2017). Cosmosapiens. Human Evolution from the Origin of the Universe. Overlook Duckworth.

Hobson, A. (2013). There are no particles, only fields. American Journal Physics, 81(3), 211-223. https://doi.org/10.1119/1.4789885

Kauffman, S. (2016). Humanity in a Creative Universe. Oxford University Press.

Kauffman, S. (2020). A World Beyond Physics. Oxford University Press.

Laloë, F. (2012). Do we really understand quantum mechanics. Cambridge University Press.

Li, N., & Luo, S. L. (2008). Classical states versus separable states. Physical Review A, 78(2), 024303. https://doi.org/10.1103/PhysRevA.78.024303

Luo, S. L. (2008). Using measurement-induced disturbance to characterize correlations as classical or quantum. Physical Review A, 77(2), 022301. https://doi.org/10.1103/PhysRevA.77.022301

Lloyd, S. (2006). Programming the Universe. A Quantum Computer Scientist Takes on the Cosmos. Alfred A. Knopf.

Long, G. L. (2006). General quantum interference principle and duality computer. Communications in Theoretical Physics, 45(5), 825-844.

Long, G. L., Qin, W., Yang, Z., & Li, J. L. (2014). Realistic Interpretation of Quantum Mechanics and Encounter-Delayed-Choice Experiment. arXiv: 1410.4129

Maldonado, C. E. (2019). Quantum Theory and the Social Sciences. Momento. Revista de Física, (59E), 34-47. https://doi.org/10.15446/mo.n59E.81645

Maldonado, C. E. (2018a). A Quantum Coherence-Recoherence-Based Model of Reality. Neuroquantology, 16(11), 44-48. https://doi.org/10.14704/nq.2018.16.11.1858

Maldonado, C. E. (2018b). Quantum Physics and Consciousness: A (Strong) Defense of Panpsychism. Trans/from/acao, 41, 101-118. http://dx.doi.org/10.1590/0101-3173.2018.v4lesp.07.p101

Maldonado, C. E., & Gómez-Cruz, N. (2015). Biological Hypercomputation: A New Research Problem in Complexity Theory. Complexity, 20(4), 8-18. https://doi.org/10.1002/cplx.21535

Maldonado-Serrano, J. F., Rodríguez-Ramírez, D. A., Cáceres B. P., & Petit-Suárez, J. F. (2020). An ontology of software: series, structure and function, Praxis Filosófica, (51), 115-132. https://doi.org/10.25100/pfilosofica.v0i51.10114

McFadden, J. & Al-Khalili, J. (2016). Life on the Edge. The Coming of Age of Quantum Biology. Bantam.

Mermin, N. D. (1985). Is the moon there when nobody looks? Reality and the quantum theory. Physics Today, 38(4), 38. https://doi.org/10.1063/1.880968

Modi, K., Brodutch, A., Cable, H., Paterek, T., & Vedral, V. (2012). The classical-quantum boundary for correlations: Discord and related measures. Review of Modern Physics, (84), 1655. https://doi.org/10.1103/RevModPhys.84.1655

Ollivier, H., & Zurek, W. H. (2001). Quantum Discord: A Measure of the Quantumness of Correlations. Physical Review Letters, (88), 01790. https://doi.org/10.1103/PhysRevLett.88.017901

Plotnitsky, A., & Khrennikov, A. (2015). Reality without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics. Foundations of Physics, 45, 1269-1300. https://doi.org/10.1007/s10701-015-9942-1

Rovelli, C. (2018). The Order of Time. Riverhead Books.

Ruyant, K. (2018). Can we make sense of relational quantum mechanics? Foundations of Physics, 48, 440-455. https://doi.org/10.1007/s10701-018-0156-1

Sanjeevi, S. (2019). Quantum Biology. Delve Publishing.

Schwindt, P. D. D., Kwiat, P. G., & Englert, B. G. (1999). Quantitative wave-particle duality and nonerasing quantum erasure. Physical Review A, 60, 4285. https://doi.org/10.1103/PhysRevA.60.4285

Smolin, L. (2019). Einstein’s Unfinished Revolution. The Search for What Lies Beyond the Quantum. Penguin Press.

Storey, E. P., Tan, S. M., Collett, M. J., & Walls, D. F. (1995). Complementarity and uncertainty. Nature, 375, 368. https://doi.org/10.1038/375368a0

Vedral, V. (2010). Decoding Reality. The Universe as Quantum Information. Oxford University Press.

Vedral, V. (2003). Classical Correlations and Entanglement in Quantum Measurements. Physical Review Letters, 90(5), 050401. https://doi.org/10.1103/PhysRevLett.90.050401

Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29(4), 639-643.

Zwirn, H. (2017). Delayed Choice, Complementarity, Entanglement and Measurement. Physics Essay, 30(3), 281-293. https://doi.org/10.4006/0836-1398-30.3.281

Walker, S. I., Davies, P. C. W., Ellis, G. F. R. (2017). From Matter to Life. Information and Causality. Cambridge University Press.

Recibido 2021-07-12
Aceptado 2021-07-12
Publicado 2021-10-26