
. .

}

Recibido: 29 de abril de 2020. Aprobado: 3 de junio de 2020.

Cómo citar este artículo: Maldonado-Serrano, J. F., Rodríguez-Ramírez, D. A., Cáceres B. P., & Petit-
Suárez, J. F. (2020). An ontology of software: series, structure and function. Praxis Filosófica, (51),
115-132. doi: 10.25100/pfilosofica.v0i51.10114

}
DOI: 10.25100/pfilosofica.v0i51.10114

Praxis Filosófica, No. 51 julio - diciembre 2020: 115 - 132 IS
SN

 (I
):

01
20

-4
68

8
/ I

SS
N

 (D
):

23
89

-9
38

7

AN ONTOLOGY OF SOFTWARE:
SERIES, STRUCTURE AND FUNCTION1

Jorge Francisco Maldonado Serrano
Dairon Alfonso Rodríguez Ramírez

Paul B. Caceres
Johann Farith Petit Suárez

Universidad Industrial de Santander, Bucaramanga, Colombia.

Abstract

This article proposes a guideline to develop an ontology of software. The
first section gives a brief introduction to the importance of such ontology as
a possible conceptual grounding for the philosophy of software, philosophy
of computing and philosophy of information. The second section presents
the background of the scope of this article in terms of both a symbolic and
materialistic approach to software. The third section deploys the basic
guidelines with the expositions of the two dimensions of software: the serial
dimension and the structural dimension. The first dimension consists of three
series, while the second in the exposition of the structure of any program.
The fourth and last section will deal with a better understanding of what we
can call the digital universe.

Keywords: Ontology; Philosophy of Software; Series; Digital Universe;
Technology.

1 This article is the result of two research projects sponsored by the Industrial University
of Santander (1764) “Ethnography of the Subjectivities of the Digital Thought” & (2403)
“Experimental Moral Philosophy for the development of Citizen Competences”

https://doi.org/10.25100/pfilosofica.v0i51.10114
https://doi.org/10.25100/pfilosofica.v0i51.10114

Una ontología de software: series, estructura y función

JorJorge Francisco Maldonado Serrano2
Dairon Alfonso Rodríguez Ramírez3

Paul B. Caceres4
Johann Farith Petit Suárez5

2 Doctor en Filosofía de la Universidad Autónoma de Madrid. Mágister en Filosofía
de la Pontificia Universidad Javeriana de Bogotá. Licenciado en Filosofía y Letras de
la Universidad Santo Tomás de Bogotá. Profesor titular de la Escuela de Filosofía en la
Universidad Industrial de Santander. Investigador del Grupo Tiempo Cero.

ORCID: 0000-0002-7707-154X E-mail: jmaldona@uis.edu.co
3 Doctor en humanidades (filosofía) por la Universidad Autónoma Metropolitana de

México. Mágister en Ciencias Cognitivas de la Universidad de Morelos, México. Filósofo
de la Universidad Industrial de Santander. Investigador invitado en el Instituto Max Planck
de Antropologia Evolutiva y Profesor Auxiliar de la Universidad Industrial de Santander.
Director del Grupo Tiempo Cero.

ORCID: 0000-0002-5183-7121 E-mail: darodri@uis.edu.co
4 Magister en Filosofía de la Universidad Industria de Santander, Abogado y Filósofo.

Joven investigador de Colciencias (2019-2020) vinculado al grupo de investigación Politeia
de la UIS y Teoría del Derecho y formación jurídica de la UNAB. Profesor de cátedra de
la Escuela de Filosofía de la Universidad Industrial de Santander, UIS y del programa de
Derecho de la Facultad de Ciencias Jurídicas y Políticas de la Universidad Autónoma de
Bucaramanga, Unab.

ORCID: 0000-0002-4561-751X E-mail: pcaceres@unab.edu.co
5 Doctor en ingeniería Eléctrica de la Universidad Carlos III de Madrid (UC3M), Mágister

en Ingeniería eléctrica e Ingeniero Electricista de la Universidad Industrial de Santander
(UIS), Bucaramanga, Colombia. Actualmente se desempeña como Decano de la Facultad de
Ingenierías en la Universidad Industrial de Santander (UIS-Colombia) de donde es profesor
desde 2001. Sus áreas de investigación incluyen calidad energética, potencia electrónica,
redes inteligentes, sistemas de energía eléctrica y enseñanza de la ingeniería.

ORCID: 0000-0003-2283-3268 E-mail: jfpetit@uis.edu.co

https://orcid.org/0000-0002-7707-154X
https://orcid.org/0000-0002-5183-7121
https://orcid.org/0000-0002-4561-751X
https://orcid.org/0000-0003-2283-3268

Resumen

Este artículo propone dar unos lineamientos para desarrollar una ontología
del software. La primera sección da una breve introducción a la importancia
de tal ontología, entendida como una fundamentación conceptual para
una filosofía del software, una filosofía de la computación y una filosofía
de la información. La segunda sección presenta el trasfondo del enfoque
de este artículo en términos de una posición materialista y una posición
simbólica. En la tercera sección se despliegan los lineamientos básicos de
dicha ontología con la exposición de las dos dimensiones del software: la
dimensión serial y la dimensión estructural; la primera que consiste en tres
series y la segunda que consiste en la exposición de la estructura lógico
formal de cualquier programa de computación actual. La cuarta y última
sección da cuenta de las posibles ganancias que se pueden obtener gracias
a haber asumido este enfoque ontológico del software, lo cual permite tener
más claridad a la hora de hablar del universo digital.

Palabras clave: ontología; filosofía del software, series, universo digital.

Jo
rg

e F
ra

nc
isc

o
M

al
do

na
do

 S
er

ra
no

, D
ai

ro
n

A
lf

on
so

 R
od

rí
gu

ez
 R

am
ír

ez
,

Pa
ul

 B
. C

ac
er

es
, J

oh
an

n
Fa

ri
th

 P
et

it
 S

uá
re

z

118

AN ONTOLOGY OF SOFTWARE: SERIES, STRUCTURE
AND FUNCTION

Jorge Francisco Maldonado Serrano
Dairon Alfonso Rodríguez Ramírez

Paul B. Caceres
Johann Farith Petit Suárez

Universidad Industrial de Santander, Bucaramanga, Colombia.

I. Ontology and Ontology of Software
Ontology, the systematic study of being qua being, has addressed objects
in their different modes of existence, their kinds and structures. As such,
ontology traditionally puts forward that existent objects must be clearly
distinguished from subsistent or ideal objects. These objects clearly do
not exist as physical objects, but rather as entities whose being is both
non-temporal and non-spatial6. In any case, traditional ontology assumes
that it is possible to give an abstract description (ontological) of the modes
of existence of particular types of objects. In fact, distinguishing among
different categories of objects is already the main task of ontology, as
differences among them are grounded in their particular modes of existence.

Martin Heidegger, a German philosopher who deeply influenced various
areas of thinking (not only philosophy), developed a pioneering discourse
on technics and technology which most of the theories on philosophy of
technology still discuss. Paradoxically, Heidegger’s original contribution
to philosophy was not in philosophy of technology, for he thought such
classification was an outrage to philosophy, but to the area of ontology. He
proposed the idea of existential ontology as the authentic task of philosophy.
He understood that any ontological inquiry must start with the exposition of
the mode of existence of the ‘who’ that asks for the being and, at the same
time, of the ‘who’ that can answer such a question. According to Heidegger,
in both cases the ‘who’ is no other than the existence of the human being
(Heidegger, 2010). This does not mean that the existence of objects depends
on human subjectivity, but rather that any determination or explanation of

6 We do not propose to think of ideal objects as eternal, but rather as objects that do not
decay in time. In this sense we can understand that these objects have a starting moment for
us humans, but after that moment they would not deteriorate or decline. One could argue
that there is a mental space, but the non-spatiality we argue refers only to space in a physical
sense, leaving other kinds of spatialization out of this discussion.

A
n

on
to

lo
gy

 o
f

so
ft

w
ar

e:
 se

ri
es

, s
tr

uc
tu

re
 a

nd
 f

un
ct

io
n

119

how something exists is essentially conditioned by the possibilities offered
to human existence to grasp objects’ existence. Following Heidegger’s lead,
we will assume that the mode of existence of software is related to human
existence. Nevertheless, in this paper we will not directly consider the
relation of human existence to software’s existence, but only the previous
analysis that will prepare us for an upcoming exposition of such relationship,
crucial to understanding software.

An ontological approach within the philosophy of technology has
been regarded with a certain degree of reserve. In this sense, contemporary
philosopher Andrew Feenberg has an emblematic stance: “Ontological
holism is of course an interesting notion, but the critique of technological
rationality does not require it. A non-ontological formulation of a critical
theory of technology is possible on terms that leave natural science out
of account.” (Feenberg, 2002, p. 175). The problem for us is not whether
ontology is a necessary speculation or a senseless word-game, but rather a
way to address the question of the nature of software, so to speak, a problem
that supposes an accurate understanding of software in its technical relations
to humans (users and programmers). An ontology of software7, in this sense,
would be a theoretical step towards a theory of the digital universe as a
theory that can encompass the actual situation of our technological society8.

II. Approaches to Software
The guidelines we would like to consider in section 3 will be better
understood against the background of prevalent philosophical9 visions about

7 Yuk-Hui’s has a different approach to software in his ontological theory of digital
objects. His key category is Data (Hui, 2016). From our perspective, computer data has its
condition of possibility given by a software. Data for a computer is something existent only
within a frame of an algorithm established by a software that does the task of diving a precise
codification to data. Anyhow, the direction of Yuk-Hui’s analysis and ours seem to converge
in that we do need an ontology of the digital and that we must understand the basic condition
of possibility of any digital object. We argue software is such a condition, even before data.

8 Álvaro Monterroza (2018) has developed an ontological analysis of the heterogeneous
nature of technical artifacts which we can consider an higher level analysis in which our
ontological analysis fits, even though he does not properly discusses digital objects.

9 It is very difficult to establish a clear limit between the philosophical tradition that
discusses this problem and a more technological tradition. Timothy R. Colburn (1999) is
a very well-known author in the technological field for discussing the problem of the dual
nature of software or its ontology, just as David R. Koepsell (2003)like an invented machine
or process, or an original expression to be copyrighted, like drawings and books? This
distinction is artificial, argues Koepsell, and is responsible for the growing legal problems
related to intellectual property law. Computer-mediated objects are no different from
books, songs, or machines and do not require any special treatment by the law. The author
suggests revisions to the legal framework itself which prevent this artificial and problematic

Jo
rg

e F
ra

nc
isc

o
M

al
do

na
do

 S
er

ra
no

, D
ai

ro
n

A
lf

on
so

 R
od

rí
gu

ez
 R

am
ír

ez
,

Pa
ul

 B
. C

ac
er

es
, J

oh
an

n
Fa

ri
th

 P
et

it
 S

uá
re

z

120

software. In the present section, we will discuss critically two of them:
a materialistic understanding of software and a symbolic interpretation.
Although there are many possible authors to consider, we will study the
works of David Berry and Luciano Floridi as their respective thoughts have
become very influential in recent debates about software10.

David Berry advocates for understanding software in its material aspect.
He understands code and software as two sides of the same coin (Berry,
2011). For him, code is the material side and software a more symbolic
reality:

Software is therefore ‘not only “code” but a symbolic form of writing in-
volving cultural practices of its employment and appropriation’ (Fuller
2008: 173). […] we can think of code as the ‘internal’ form and software
as the ‘external’ form of applications and software systems. Or to put it
slightly different, code implies a close reading of technical systems and
software implies a form of distant reading. […] Perhaps the most important
point of this distinction is to note that code and software are two sides of
the same coin, code is the static textual form of software, and software is
the processual operating form. (2011, p. 32).

Code is, for Berry, the text in a programming language that determines
software. Therefore, code, as a text, can be printed or written, saved on a
media or even memorized in someone’s brain, and it is this aspect of code that
probes its materiality. Although we consider this an interesting distinction,
we claim that software as such is a better basis for our analysis. Assuming
software as an opening category we will be in a better position to understand
the impact digital technology has in our modern world and interpret code,

distinction, and simplifies the protection of all intellectual property.”,”ISBN”:”978-
0-8126-9537-3”,”language”:”en”,”number-of-pages”:”164”,”publisher”:”Open
Court Publishing”,”source”:”Google Books”,”title”:”The Ontology of Cyberspace:
Philosophy, Law, and the Future of Intellectual Property”,”title-short”:”The Ontology
of Cyberspace”,”author”:[{“family”:”Koepsell”,”given”:”David R.”}],”issued”:{“date-
parts”:[[“2003”,2]]}},”suppress-author”:true}],”schema”:”https://github.com/citation-style-
language/schema/raw/master/csl-citation.json”} , for discussing the nature of the so-called
cyberspace. This paper will not discuss such a trend of discussion, although it may seem
that it should. Our only argument in favor of such a decision is to offer a perspective from
which to offer a detailed analysis in a future research.

10 Stiegler (1994; 1996; 2001) does not develop an ontology of software, of information
or of the digital, but we could consider his analysis of technics deserves special consideration
as a predecessor to this proposal if the aim of this paper were not be limited to the technicity
of the digital software.

A
n

on
to

lo
gy

 o
f

so
ft

w
ar

e:
 se

ri
es

, s
tr

uc
tu

re
 a

nd
 f

un
ct

io
n

121

not as a mere material reality of software, but a series where the symbolic
(programming language) is already present.

Through code, Berry characterizes software as a material reality.
Assuming Latour’s perspective, he understands the process of software
production. This process ranges from the code design to licensed software,
and can be described as a material process. Here, we find a mistake which
consists in assuming a process as a material reality. By reducing software to
its effects or material realizations and to its dependence on material circuits,
Berry does not properly account for the symbolic reality software purports.
The software’s logico-mathematical structure of the machine language and
the symbolic images it can display, as well as the hardware processes, require
more than a material conception of software.

We suspect that one reason for Berry’s point of view would be the
implicit acceptance of the standard distinction software/hardware. But this
would not be helpful either, for it supposes a hiatus, an ontological break.
A dualistic approach cannot give an account of how hardware relates to
software, for the characteristic of any dualism is precisely to leave both sides
without a connection. But we, empirically, know just the contrary, that there
is some kind of continuity between software and hardware.

Berry’s thesis primarily aims to macro-processes such as political,
economic and law processes, which are essential for his understanding
of code: “Getting at the materiality of code has to take into account its
physicality and obduracy, but also the ‘code work’ and ‘software work’
that goes into making and maintaining the code (e.g. documentation, tests,
installers, etc.), the networks and relationships, and the work that goes into
the final shipping product or service.” (Berry, 2011, p. 32). We consider
these aspects very worthy for any ontology of software, but these must be
completed with an additional distinction. Our proposal is to understand
software as a complex of two dimensions, the serial dimension and the
structural dimension. The serial dimension would conjugate symbols, matter
and energy, while the structural dimension conjugates code, intentionality
and machine language. As we have said, this article will only present the
first dimension. From this point of view, the material conception and the
hardware/software distinction can be understood as an illusion, based on a
hylemorphic conception.

The distinction between hardware and software is a conceptual
distinction based on the perception that a computer is a compound, a material
and formal part. The material part is composed of circuits, while the formal
part consists of software. This recalls the cartesian dualism of res extensa

Jo
rg

e F
ra

nc
isc

o
M

al
do

na
do

 S
er

ra
no

, D
ai

ro
n

A
lf

on
so

 R
od

rí
gu

ez
 R

am
ír

ez
,

Pa
ul

 B
. C

ac
er

es
, J

oh
an

n
Fa

ri
th

 P
et

it
 S

uá
re

z

122

and res cogitans. But this way of perceiving the computer and, thus, software
does not do justice to its complex reality.

On the one hand, software is understood as something that can be
separable from hardware as if it could exist independently from its physical
realization. But we all know that software can only function if it is coded in
and for a particular type of hardware structure. The fact that we find similar
programs on different hardware platforms may reinforce this dualistic
perception. In such cases, what is shown on the screen seems alike (if not
the same). So, according to the dualistic perception, the codification behind
the screen is not a particular codification for a particular type of hardware,
but a generic code that can be implemented by any kind of hardware. What
we want to stress is quite the opposite, that it is not correct to assume that
codification is independent of the hardware for which it is intended. This
nuance is not considered under a dualistic view.

On the other hand, this perception supposes the ontological
independence of hardware, otherwise, it would not make sense to distinguish
it from software. But, just as mentioned above, computer hardware is not
a stand-alone machine, i.e., any system of circuits needs a program for it
to function properly as a computational device. Hardware alone would be
nothing more than a bunch of plastic and metals. Rightly acknowledged
hardware without software would not be hardware at all. One could argue
that some of the actual computer devices work as stand-alone machines
(LED T.V.s, washing machines, dishwashers, Blu-ray players and the like),
but all of these machines work only under the condition they have some
software embedded in the hardware.

Once we have seen the obstacles and difficulties for an ontology in
which software is considered just material, now we can examine a more
symbolic approach to software exemplified by Floridi’s informational
ontology.

Floridi (2011) advocates for an informational ontology, in opposition
to a digital ontology. He makes his case explicit as to what digital ontology
he detaches from: “digital ontology, according to which the ultimate nature
of reality is digital, and the universe is a computational system equivalent
to a Turing machine, should be carefully distinguished from informational
ontology, according to which the ultimate nature of reality is structural, in
order to abandon the former and retain only the latter as a promising line
of research.” (2011, p. 36).

The problem for us is that his claim about information is applied
to different kinds of phenomena which should not be homologated as if
information were a unified phenomenon. Even if he rightly works out the

A
n

on
to

lo
gy

 o
f

so
ft

w
ar

e:
 se

ri
es

, s
tr

uc
tu

re
 a

nd
 f

un
ct

io
n

123

manifold nature of information, all its meanings and different contextual
uses (Floridi, 2010), we do not pretend to discuss this aspect of his research
within the scope of our proposal. Suffice is to say that before admitting
information as the basic ontological dimension, we would rather look at
technical mechanisms that produce it. Once we can grasp this production
an understanding of the differences, similarities or unity of information
can be established. But this implies extensive research, to assess if such
generalization under the concept of information gives an acute account of
the phenomena.

On the contrary, software seems to be a very precise reality of which
we can give a precise account without being forced to extend its genesis to
Charles Babbage’s Analytical Engine. The interesting aspect of software, the
only digital object as it were, is that it has a very complex way of existence.
Restricting it to the idea of digital information, i.e., information computed by
digital computers, is to forget we always need a previous software that would
capture information as data, compute it and produce new data. Even if we
were to consider the code of software as information, we need to notice that
previous running software is what enables the production of new computer
code that would work as new software. Put it in other words, any digitized
information or computer data needs a pre-existing structuring software that
gives information (and data) its structural possibility of existence. In this
sense, software is ontological prior to information.

Thus, an ontology of software, in the sense we are talking, does not
reduce software to a material reality nor to an abstract informational realm.
Let us present the two basic guidelines to be considered in an ontological
analysis of software.

III. Ontology of Software: Series and Structure
The main problem with an ontology of software is that software is not a thing
or an entity as we are used to thinking about them. Software, undoubtedly
as an expression, refers to the kind of thing that can only exist or is accepted
as existent if various processes and various components function. But this
functioning is taken for granted, for it is quite complex, and it must be
obfuscated if the expression ‘software’ is intended to be used as if it were
referring to an object or a thing. The object or thing we think software refers
to does not really exist as such, we argue.

The first task for an ontology of software is to think about the complexity
of software. Therefore, we consider this a first approach which can and has
to be enriched, criticized and perfected. Let us examine what we consider
as the first ontological dimension of software.

Jo
rg

e F
ra

nc
isc

o
M

al
do

na
do

 S
er

ra
no

, D
ai

ro
n

A
lf

on
so

 R
od

rí
gu

ez
 R

am
ír

ez
,

Pa
ul

 B
. C

ac
er

es
, J

oh
an

n
Fa

ri
th

 P
et

it
 S

uá
re

z

124

3.1 Serial dimension of software
Consider three series: energy flux, circuitry and code. The first series, the
energy flux, can be understood just by considering the fact that any given
digital computer consumes energy with a standard voltage supply (±100V
through ±240V, depending on the country). Electrical energy is and has
to be flowing through the circuitry in order for us to say there is software
running. But the important aspect to highlight is that the input voltage is
regulated according to the circuit that needs it (screen, flash drive, CPU,
cooling system, and the like). Each circuit consumes energy at some specific
voltage level and at a proper frequency. Let us not pass into oblivion that
network connections, either wired or wireless, are also the flows of energy
necessary for a computer device to work properly. The computer transduces
these fluxes permanently in order to achieve electronic homogeneity and
stability. Therefore, our first claim is that the computer organizes electrical
fluids. This electrical organization is made in accordance with the logic that
is embedded in the circuits. This logic is fit to the mathematical theory of
information and, based on mathematical theory of probability, is at the base
of the organization of signals of energy that the computer receives and sends.
In this context, the energy flux is in-formed or, more precisely pre-formed,
as it is regularized, or it is given a special voltage. We can say that a series
of energy fluxes is part of the computational process we think of as software.

The second series, the circuitry, can be understood as space or a place
where and through the electrical energy is properly driven. Circuits are
organized on a plastic board, on a physical series, that strictly speaking is
material. This series is organized in response to the physical properties of
the materials used (copper, silicon, gold, tin, quartz). Each of the circuits
is constructed with specific materials that give them their computational
capabilities, so to speak. This means that the computational possibilities
hardware has are in direct logico-mathematical relation to the materials it
is made of. Thus, the series of circuitry is configured logically so that it can
stand the energy flow and pre-form it. Let us notice, therefore, that both
series converge on each other for energy flows, as they are pre-formed,
through the materials which are configured in order to achieve such a flow.

The third series corresponds to the different levels of codification or
programming we find in computers. From the hard-wired firmware to the
drawing of figures on design software, we can detach various levels of
computer language if we look at the programming and the functioning.

The Programming aspect of the code series can be disaggregated in
five levels. Computer machine programming includes a very low-level
code that is hardwired in every one of its components in order for them to

A
n

on
to

lo
gy

 o
f

so
ft

w
ar

e:
 se

ri
es

, s
tr

uc
tu

re
 a

nd
 f

un
ct

io
n

125

work. It is a code embedded in hardware, which we hardly acknowledged
as software in our normal way of understanding software. This hardware
code will be the last level of code to be executed in order to run a higher-
level code. We can also differentiate the code in machine language that runs
through the CPU from the one that runs in the mainboard. But, for the CPU
to run any machine-language program, it must be prepared by the operative
system (OS), a program that enables the circuitry to respond to the flow of
commands.

Let us not forget that the OS and the programs executed in any OS need
to be translated into machine language. This means the compiler program
plays a very important role in the art of programming because it is responsible
for taking any code programmed by a human being and turning it into the
code that can flow through the CPU and through the rest of the hardware.

Finally, we have the programs in computer languages that, likewise, are
particular machine language code that presents a humanly understandable
code to test the ideas of the programmer. These computer languages are
considered high-level languages inasmuch as they are very distant to
computer language and closer to the human way of speaking. In any case,
still no computer language is near a normal language, for it is very simple
and logical. Normal language is full of fuzzy meanings and uses, imprecise
or variable constructions, and the like. Computer language, although can
be structured differently for equal ends, has to be very precise in order to
avoid errors. Strictly speaking meaning is not an essential part of computer
language as it is to normal human language, it is pure syntaxis. These five
levels are not the whole of the code series, for in functioning the picture is
quite different.

The functioning code, in the sense that a code must be run in a computer
for it to work can easily be distinguished from code as a list of lines of
programming. Running code only has two levels: machine language, in
which everything (that is presented on screen, for example, or in any other
output device or, in general, in any circuit) really happens; and hardwired
functioning code. If we were to look with our eyes, as in the movie Tron,
inside the hardware and try to perceive what is happening inside the wires,
we would only perceive flows of energy. The interesting point is that this
flow is organized logically in machine language. A running code inside the
computer is a complex flow of electricity that can be represented as simple
zeroes and ones. This means that, for example, the running code that makes
the mouse pointer a visual reality on the screen is the result of electrical
fluxes between the mouse, the mainboard (and other circuits) and the screen.
These fluxes can be represented as a flow of zeroes and ones under a machine

Jo
rg

e F
ra

nc
isc

o
M

al
do

na
do

 S
er

ra
no

, D
ai

ro
n

A
lf

on
so

 R
od

rí
gu

ez
 R

am
ír

ez
,

Pa
ul

 B
. C

ac
er

es
, J

oh
an

n
Fa

ri
th

 P
et

it
 S

uá
re

z

126

language structure. But the reality is that normally nobody is interested in
making that representation explicit. Anyhow, no matter what the intention
of the user is, the actual flow of electrical flux runs through the circuit and
that is what counts as, for example, the pointer of the mouse.

This series of code in its two aspects is properly entangled with the
former two series. It can be said that it is in accordance with codification
that the series of energy flux is pre-formed and that the series of circuitry is
configured. Thus, the series of code is structured, as schemed in flowcharts.
It is by means of the series of code, direct machine language, that we can
speak of software, undoubtedly. Still, this code series would be nothing
without the energy series and the circuitry series. The pre-formation of
energy consumption, the configuration of circuitry and the structuration of
software all converge logically.

We accept that the first two series respond to a formal distinction whose
conceptual gain does not appear explicit. Nevertheless, we consider that the
formal distinction of the first two series is as important as the understanding
of the specificity of the code series for the whole ontology of software. The
idea of claiming that software is only information, meta-data or matter, does
not seem to be enough. Enough for what? For a consistent frame to interpret
digital technology in modern society. But before addressing this question,
at least briefly in this article, we propose to examine the second dimension
of software, the structural dimension.

These three series could be misunderstood if they were taken as two
material series versus a symbolic series. All three series have their own level
of information. Although previous examples leave the impression that the
two first series have a material nature while the third is just symbolic, it is
important to note that a proper functioning of the electrical series requires
different grades of information in accordance with the different voltage
levels. Equally, the series of the circuitry implies some symbolization that
assures that code will run properly. Finally, a series of code contains material
elements as well as energetic elements. To explain this in other words, each
of the series necessarily possesses a serial duality mainly because each of
them requires an informational series of its own to which energy, circuits
and code are linked.

This is the first dimension of the series that lets us interpret software as
a process in which circuits, energy and code converge. This first dimension
requires, nonetheless, to be completed by the user. Inasmuch as any software
runs itself, it is essential to include the dimension of the human action. This
dimension would include at least three components: the body, intentionality
and the computational abilities of the user. This article only studies the serial

A
n

on
to

lo
gy

 o
f

so
ft

w
ar

e:
 se

ri
es

, s
tr

uc
tu

re
 a

nd
 f

un
ct

io
n

127

and the structural dimensions of software, not its human dimension11. After
developing these serial and structural dimensions we will be able to address
the human action in and with software.

3.2. Structural Dimension of Software
Besides the previous ontological description, we can now address the
structural dimension of software. This dimension primarily refers to the
abstract structure any software would respond to. Besides the various levels
of code and its functioning, the serial dimension has shown, the series of code
can be understood in a logical simple way: a relation between commands,
variables, calculations, inputs and outputs. This structural dimension will
let us comprehend the reach of digital technology and its possibilities, and
the correct way to introduce the idea of a digital universe.

A command in any computer language is, strictly speaking, a series of
more basic commands that the computer executes as a way of functioning
(using circuits to let an energy flow by). In the long run, any program
in a particular computer language could be itself into a command on a
higher-level language. This has happened many times (pointer, windows,
sprites, and the like). Any subroutine or objects of programming, to which
programming is oriented, are commands or sets of commands that the high-
level programmer ignores and does not need to know or be aware of.12 We
can classify the commands in three types: input or information capturing
commands, processing or calculation commands and output or presentation
commands.

Variables should be considered in their relation to memory addresses.
There we keep or store any kind of alphanumerical registry (permanently
or temporarily). Just as a command, a variable is an essential condition for
the full operability of any computer. A registry can be allocated in a memory
address and then retrieved for any computation. We can distinguish here
two levels: the physical address and the variable in code. Variables are

11 Human intentionality will guide this analysis. On the one hand, Juan Manuel Jaramillo
Uribe (2020) recently argued that the application of intentional explanation to theories that
give account of human products, more than fruitful; on the other hand, Juan Carlos Moreno
and his team has recently synthesized how the problem of human agency in technics is key
to properly give account of technological reality (Moreno Ortiz et al., 2020). We expect to
articulate this fourth series in a general ontological theory of software.

12 Probably the illusion of software as independent from energy and circuits emerges
from the storage media (a part of the circuitry series), for it creates the illusion as if we were
carrying code. But we must not be confused because on this storage medium we have a kind
of registry of something that counts as code that becomes software once it is executed on
a computer by a user. In this, sense, we shall keep in mind that software is pure actuality

Jo
rg

e F
ra

nc
isc

o
M

al
do

na
do

 S
er

ra
no

, D
ai

ro
n

A
lf

on
so

 R
od

rí
gu

ez
 R

am
ír

ez
,

Pa
ul

 B
. C

ac
er

es
, J

oh
an

n
Fa

ri
th

 P
et

it
 S

uá
re

z

128

traditionally distinguished between numeric and alphanumeric, i.e., those
that can serve to do mathematical computations and those that simply store
chains of characters.

In turn, chains of variables can be established, as in databases. But
variables do not only have this usage. The content of variables can be
combined and/or transformed in other contents to be kept new or the same
variables. This last aspect takes us to the computation or the mathematical
processing of variables through commands.

The commands carry out computations with the assigned content of
variables. Computations are, in principle, simple processes and they work
in blocks. The trick of any computer code is to understand that it makes a
complex set of computations in order to obtain a specific result from specific
data, depending on the sequence of commands and the kind of variables
defined. We can speak of a hierarchy of computations in accordance with
the whole of the computer code programmed.

Let us now describe the relationship between commands, variables and
calculations. Variables are determined to be filled with data.

The main issue at stake in this regard is that it is necessary to fill the
variables with data, which means storing values in a physical memory
address. This is what is done when the user, for example, types in numbers
(or data) to compute. In order to capture the information given by the user,
it is necessary to implement a capturing command, which can catch any
input. In fact, a user other than the programmer does not know what specific
information is being expected for her to introduce unless the program itself
asks for specific information. In this sense, we can identify several commands
for making presentations on screen. Information introduced in this manner is
an aspect different from data processing, although the computer will process
them like any other data.

The results of data processing can be presented on the screen, if
necessary. The lapse of time between the input or capture of data, the
processing and the presentation of the result determines the complexity of
the program. In this sense, we can understand that software has a limited time
for proper computation: an inferior or internal time in function of the data
input and the intermediate time in function of the time processing requires.

This basic structure in which variables, order and syntax of the program,
processing of variables, the capture of data in variables and presentation of
data seems to give a complete structural account of any code. This chain
of commands is what constitutes the identity of the program, i.e. do what
is supposed to do.

A
n

on
to

lo
gy

 o
f

so
ft

w
ar

e:
 se

ri
es

, s
tr

uc
tu

re
 a

nd
 f

un
ct

io
n

129

IV. Software and Digital Universe
We can reach a conclusion from the previous reflections regarding an
ontology of software, at least in these first two dimensions. We will consider
mostly the importance of the perspective of the digital universe as the plane
of immanence of all phenomena related to the computational reality in
nowadays society.

Any computer program or software always works singularly, i.e. in a
singular machine. Once Robert Elliot Kahn and Vinton Gray Cerf achieved
the development of the TCP/IP protocol in 1989, and the University of
California lent it to Public Domain, singular machines could be steadily
connected and, with time, they would be spread all around the globe. Let
us not forget Ted Nelson’s conception of the Hypertext and Hypermedia
that actualized the first Internet media. Like these, many other software
developments are what made the Internet possible. Under this perspective,
the Internet emerges not as a particular software, but as a digital set (in
contrast with Simondon’s technical set (Simondon, 1989)), or a set of
programs running altogether.

As we have pointed out, Floridi’s approach to the philosophy of
computing and information places information as the ground for the digital
phenomena. But, under an ontology of software, information is at best
understood as a component of software. We cannot doubt that information
is found in each of the series, but, as we have seen, we found different levels
of information in each one of them. The structural dimension of software
implies a logical configuration as we have mentioned above. But we shall
not miss that the structure described is external to the information. Anyhow,
the real problem starts if we try to understand the specificity of information
or if we try to make explicit what we may mean by information.

We possibly need to develop a critique of information in order to
understand what we mean by it13. From this ontological perspective, even
without such a critique, we can consider that information is digitized (in the
convergence of the three series), which means that a software operates as a
translator, and thus that information is placed on a new plane of immanence.
The important feature in this view is that digitalization enlarges the amount
of digital data, making possible information as such14. The process of

13 Discussing Floridi’s entire conception of information, especially the idea of infosphere
in contrast with the idea of a digital universe, overflows the possibilities of this article.
Nevertheless, such contrast needs at least the preliminary remarks we pretend with this article.

14 The idea of “virtual reality” is explicitly avoided as we explained elsewhere (Maldonado
Serrano & Rodríguez, 2018)

Jo
rg

e F
ra

nc
isc

o
M

al
do

na
do

 S
er

ra
no

, D
ai

ro
n

A
lf

on
so

 R
od

rí
gu

ez
 R

am
ír

ez
,

Pa
ul

 B
. C

ac
er

es
, J

oh
an

n
Fa

ri
th

 P
et

it
 S

uá
re

z

130

digitization itself constitutes something else, a transcendental space we
propose to call the digital universe (Maldonado Serrano & Rodríguez, 2014).

But, the connections through the internet open to us a universal
space that we can understand only as a transcendental space or milieu.
Nevertheless, this universal connectedness is not a possibility, it is rather, a
reality. So, the transcendental task of philosophy would be, just as Deleuze
(1990) argued, to study the conditions of reality of this transcendental milieu,
different from the transcendental philosophy as the study of conditions
of possibilities of experience. Philosophy of software is transcendental
empiricism in this sense.

References
Berry, D. M. (2011). The Philosophy of Software: Code and Mediation in the Digital

Age. London, England: Palgrave Macmillan.
Colburn, T. R. (1999). Software, Abstraction and Ontology. The Monist, 82(1), 3-19.
Deleuze, G. (1990). Pourparlers. Paris, France. Les Editions de Minuit.
Feenberg, A. (2002). Transforming Technology: A Critical Theory Revisited (2nd

ed.). Oxford, England: Oxford University Press.
Floridi, L. (2010). Information a Very Short Introduction. Oxford, England: Oxford

University Press.
Floridi, L. (2011). The philosophy of information. Oxford, England: Oxford

University Press.
Heidegger, M. (2010). Being and Time (J. Stambaugh y D. Schmidt, Trads.). Nueva

York, USA: State University of New York Press.
Hui, Y. (2016). On the Existence of Digital Objects (1.a ed., Vol. 48). Minnesota,

USA: University of Minnesota Press.
Koepsell, D. R. (2003). The Ontology of Cyberspace: Philosophy, Law, and the

Future of Intellectual Property. Colorado, USA: Open Court Publishing.
Maldonado Serrano, J. F., y Rodríguez, D. A. (2014). Humanidad y universo digital:

Prolegómenos al problema ético de la utilidad y el perjuicio de lo digital para la
vida. Análisis, 46(48), 27-40. doi: 10.15332/s0120-8454.2014.0084.02

Maldonado Serrano, J. F., & Rodríguez, D. A. (2018). Critical digitality: From
the virtual to the digital. Praxis Filosófica, (45S), 145-163. doi: 10.25100/
pfilosofica.v0i45S.6134

Monterroza Ríos, Á. D. (2018). La naturaleza heterogénea de los artefáctos
técnicos: Un análisis ontológico. Medellín, Colombia: Fondo Editorial ITM.

Moreno Ortiz, J. C., Fonseca Martínez, M. A., Prada Rodríguez, M. L., Orrego
Echeverría, I. A., Pérez Jiménez, J. A., & Rengifo Ariza, L. E. (2020). Tecnología,
agencia y transhumanismo. Bogotá, Colombia: Universidad Santo Tomás.

Simondon, G. (1989). Du Mode d’Existence des Objects Techniques: Edition
augmentèe. Paris, France: Aubier.

https://doi.org/10.15332/s0120-8454.2014.0084.02
https://doi.org/10.25100/pfilosofica.v0i45S.6134
https://doi.org/10.25100/pfilosofica.v0i45S.6134

A
n

on
to

lo
gy

 o
f

so
ft

w
ar

e:
 se

ri
es

, s
tr

uc
tu

re
 a

nd
 f

un
ct

io
n

131

Stiegler, B. (1994). La technique et le temps: La faute d’Epiméthée. Paris, France:
Galilée/Cité des sciences et de l’industrie.

Stiegler, B. (1996). La technique et le temps: La désorientation. París, Francia:
Galilée/Cité des sciences et de l’industrie.

Stiegler, B. (2001). La technique et le temps: Le temps du cinéma et la question du
mal-étre. París, Francia: Galilée/Cité des sciences et de l’industrie.

Jaramillo-Uribe, J.M. (2020). El enfoque intencional en las ciencias sociales: Una
mirada estructuralista de las teorías científicas intencionales. Praxis Filosófica,
(50), 141-160. doi: 10.25100/pfilosofica.v0i50.8783

https://doi.org/10.25100/pfilosofica.v0i50.8783

